

CA3161

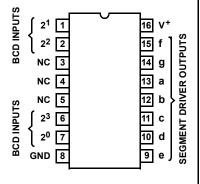
BCD to Seven Segment Decoder/Driver

FN1079 Rev.3.00 Aug 1997

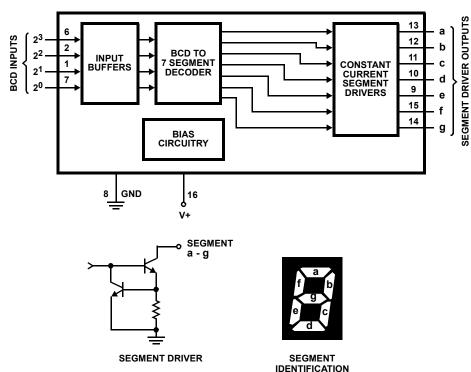
Features

- · TTL Compatible Input Logic Levels
- 25mA (Typ) Constant Current Segment Outputs
- Eliminates Need for Output Current Limiting Resistors
- Pin Compatible with Other Industry Standard Decoders
- Low Standby Power Dissipation18mW (Typ)

Ordering Information


PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.	
CA3161E	0 to 70	16 Ld PDIP	E16.3	

Description


The CA3161E is a monolithic integrated circuit that performs the BCD to seven segment decoding function and features constant current segment drivers. When used with the CA3162E A/D Converter the CA3161E provides a complete digital readout system with a minimum number of external parts.

Pinout

CA3161 (PDIP) TOP VIEW

Functional Block Diagram

Absolute Maximum Ratings

DC V _{SUPPLY} (Between Terminals 1 and 10)	+7.0V
Input Voltage (Terminals 1, 2, 6, 7)	+5.5V
Output Voltage	
Output "Off"	. +7V
Output "On" (Note 1)	+10V

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)
PDIP Package	100
Maximum Junction Temperature	
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C

Operating Conditions

Temperature Range0°C to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. This is the maximum output voltage for any single output. The output voltage must be consistent with the maximum dissipation and derating curve for worst case conditions. Example: All segments "ON", 100% duty cycle.
- 2. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_A = 25 \times {}^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
V _{SUPPLY} Operating Range, V ⁺		4.5	5	5.5	V	
Supply Current, I ⁺ (All Inputs High)		-	3.5	8	mA	
Output Current Low (V _O = 2V)		18	25	32	mA	
Output Current High (V _O = 5.5V)		-	-	250	μΑ	
Input Voltage High (Logic "1" Level		2	-	-	V	
Input Voltage Low (Logic "0" Level)		-	-	0.8	V	
Input Current High (Logic "1")		2V	-30	-	-	μΑ
Input Current Low (Logic "0")		0V	-40	-	-	μΑ
Propagation Delay Time,	pagation Delay Time, t _{PHL}		-	2.6	-	μS
	t _{PLH}		-	1.4	-	μS

© Copyright Intersil Americas LLC 1997. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

TRUTH TABLE

BINARY		INP	UTS		OUTPUTS							
STATE	23	22	21	20	а	b	С	d	е	f	g	DISPLAY
0	L	L	L	L	L	L	L	L	L	L	Н	
1	L	L	L	Н	Н	L	L	Н	Н	Н	Н	
2	L	L	Н	L	L	L	Н	L	L	Н	L	
3	L	L	Н	Н	L	L	L	L	Н	Н	L	
4	L	Н	L	L	Н	L	L	Н	Н	L	L	4
5	L	Н	L	Н	L	Н	L	L	Н	L	L	5
6		Н	Н	L	L	I	L	L	_	ا	L	
7		Н	Н	Τ	L	L	L	I	Н	Н	Τ	(
8	Н	L	L	L	L	L	L	L	L	L	L	
9	Н	L	L	Н	L	L	L	L	Н	L	L	
10	Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	-
11	Н	L	Н	Н	L	H	Н	L	L	L	L	
12	Н	Н	L	L	Н	L	L	Н	L	L	L	H
13	Н	Н	L	Н	Н	Н	Н	L	L	L	Н	
14	Н	Н	Н	L	L	L	Н	Н	L	L	L	
15	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	BLANK